Взяли кредит на 19 месяцев

Сегодня поможем разобраться в теме: "Взяли кредит на 19 месяцев". Предлагаем полное описание тематики, взятое из источников, заслуживающих доверия, с комментариями специалистов. Если все же остаются вопросы, то их можно задать дежурному консультанту.

Содержание

Взяли кредит на 19 месяцев

17; Клиент банка планирует взять 15-го августа кредит на 19 месяцев. Условия возврата таковы:- 1-го числа каждого месяца долг возрастает на r% по сравнению с концом предыдущего месяца;- со 2-го по 14-е число каждого месяца необходимо выплатить часть долга; 15-го числа каждого месяца долг должен быть на одну и ту же величину меньше долга на 15-е число предыдущего месяца.Известно, что общая сумма денег, которую нужно выплатить банку за весь срок кредитования, на 25% больше, чем сумма, взятая в кредит. Найдите r.

17; Клиент банка планирует взять 15-го августа кредит на 17 месяцев. Условия возврата таковы:- 1-го числа каждого месяца долг возрастает на r% по сравнению с концом предыдущего месяца;- со 2-го по 14-е число каждого месяца необходимо выплатить часть долга;- 15-го числа каждого месяца долг должен быть на одну и ту же величину меньше долга на 15-е число предыдущего месяца.Известно, что общая сумма денег, которую нужно выплатить банку за весь срок кредитования, на 9% больше, чем сумма, взятая в кредит. Найдите г.

Источник: http://egeon100.ru/pages/me1/v4/f0000298.html

15 января планируется взять кредит в банке на 24 месяца. Условия его возврата таковы: — 1-го числа каждого месяца долг возрастает на 2% по сравнению с концом предыдущего месяца; — со 2-го по 14-е число каждого месяца необходимо выплатить часть долга; — 15-го числа каждого месяца долг должен быть на одну и туже величину меньше долга на 15-е число предыдущего месяца. Известно, что в течение первого года кредитования нужно вернуть банку 2466 тыс. рублей. Какую сумму нужно выплатить банку за последние 12 месяцев?

Если видишь в условии задачи фразу «на одну и ту же», то это задача на дифференцированный платеж. О разнице аннуитетного и дифференцированного платежах можно посмотреть здесь на примерах двух задач.

Распишем, что дано.

S — сумма денег, взятая в кредит

m = 1 + 2/100 = 1,02 (полезный коэффициент; увеличитель суммы долга)

xn — ежемесячные выплаты

Если долг на одну и ту же величину меньше, то это говорит о том, что он уменьшается равномерно каждый месяц на S/24 (всю сумму кредита S разделили на 24 месяца).

Помимо этого мы знаем, что каждый месяц долг увеличивается на 2% (в m раз) и делается выплата.

Распишем, что будет происходить с долгом по месяцам (Нас будут интересовать только 1-й, 12 -й, 13-й и 24-й месяцы. Почему? — узнаешь дальше).

Помимо того, что я распишу изменение суммы долга, я сразу выражу выплаты, которые должны будут производиться.

Небольшой комментарий к предыдущей записи. Я не случайно расписала изменение долга за второй месяц. Именно он позволяет мне перепрыгнуть сразу к 12-ому месяцу. Как так получается? Номер второго месяца и числитель в первой дроби в сумме дают 25 (2 + 23), и такая сумма должна быть и в 3-ем, 4-ом, . 12-ом, . 24-ом месяцах. Если мой месяц идет под номером 12, то в числителе будет стоять число 13, т.к. 12 + 13 = 25; если месяц идет под номером 24, то в числителе дроби будет стоять число 1, которое не пишется, т.к. 1 · S = S.

Как мы уже знаем, долг уменьшается равномерно на одну и ту же сумму, т.е. уменьшается в арифметической прогрессии.

Выразим сумму выплат за первые 12 месяцев по формуле суммы первых n членов арифметической прогрессии. Сама формула выглядит так:

Адаптируя ее под нашу задачу, получим вот что:

Путем несложных преобразований найдем S.

Теперь выразим сумму выплат за последние 12 месяцев.

Преобразуем правую часть уравнения и подставим найденную S:

Источник: http://xn--80aaasqmjacq0cd6n.xn--p1ai/app/examples/view/Tekstovye-zadachi/Reshit-zadachu21/

Взяли кредит на 19 месяцев

15-го января планируется взять кредит в банке на 19 месяцев. Условия его возврата таковы:

— 1-го числа каждого месяца долг возрастёт на r% по сравнению с концом предыдущего месяца;

— со 2-го по 14-е число каждого месяца необходимо выплатить часть долга;

— 15-го числа каждого месяца долг должен быть на одну и ту же сумму меньше долга на 15-е число предыдущего месяца. Известно, что общая сумма выплат после полного погашения кредита на 30% больше суммы, взятой в кредит. Найдите r.

Пусть начальная сумма кредита равна S, тогда переплата за первый месяц равна По условию, ежемесячный долг перед банком должен уменьшиться равномерно. Этот долг состоит из двух частей: постоянной ежемесячной выплаты, равной , и ежемесячной равномерно уменьшающейся выплаты процентов, равной

Используя формулу суммы членов арифметической прогрессии, найдём полную переплату по кредиту:

По условию общая сумма выплат на 30% больше суммы, взятой в кредит, тогда:

Примечание Дмитрия Гущина.

Укажем общие формулы для решения задач этого типа. Пусть на n платежных периодов (дней, месяцев, лет) в кредит взята сумма S, причём каждый платежный период долг сначала возрастёт на r% по сравнению с концом предыдущего платежного периода, а затем вносится оплата так, что долг становится на одну и ту же сумму меньше долга на конец предыдущего платежного периода. Тогда величина переплаты П и полная величина выплат В за всё время выплаты кредита даются формулами

В условиях нашей задачи получаем: откуда для n = 19 находим r = 3.

Доказательство формул (для получения полного балла его нужно приводить на экзамене) немедленно следует из вышеприведённого решения задачи путём замены 19 месяцев на n месяцев и использовании формулы суммы n первых членов арифметической прогрессии.

Источник: http://ege.sdamgia.ru/problem?id=510103

Задача 28226 15-го января планируется взять кредит в

УСЛОВИЕ:

15-го января планируется взять кредит в банке на 19 месяцев. Условия его возврата таковы:

— 1-го числа каждого месяца долг возрастает на 2% по сравнению с концом предыдущего месяца;

— со 2-го по 14-е число каждого месяца необходимо выплатить часть долга;

— 15-го числа каждого месяца долг должен быть на 50 тыс.меньше долга на 15-у число предыдущего месяца.
Сколько будет составлять S 18 месяца, если сумма выплат будет равна 1209

Добавил u852616596 , просмотры: ☺ 2783 ⌚ 01.06.2018. математика 10-11 класс

Источник: http://reshimvse.com/zadacha.php?id=28226

Взяли кредит на 19 месяцев

15-го января планируется взять кредит в банке на 19 месяцев. Условия его возврата таковы:

— 1-го числа каждого месяца долг возрастёт на r% по сравнению с концом предыдущего месяца;

— со 2-го по 14-е число каждого месяца необходимо выплатить часть долга;

Читайте так же:  Какие алименты платятся на одного ребенка

— 15-го числа каждого месяца долг должен быть на одну и ту же сумму меньше долга на 15-е число предыдущего месяца. Известно, что общая сумма выплат после полного погашения кредита на 30% больше суммы, взятой в кредит. Найдите r.

Пусть начальная сумма кредита равна S, тогда переплата за первый месяц равна По условию, ежемесячный долг перед банком должен уменьшиться равномерно. Этот долг состоит из двух частей: постоянной ежемесячной выплаты, равной , и ежемесячной равномерно уменьшающейся выплаты процентов, равной

Используя формулу суммы членов арифметической прогрессии, найдём полную переплату по кредиту:

По условию общая сумма выплат на 30% больше суммы, взятой в кредит, тогда:

Примечание Дмитрия Гущина.

Укажем общие формулы для решения задач этого типа. Пусть на n платежных периодов (дней, месяцев, лет) в кредит взята сумма S, причём каждый платежный период долг сначала возрастёт на r% по сравнению с концом предыдущего платежного периода, а затем вносится оплата так, что долг становится на одну и ту же сумму меньше долга на конец предыдущего платежного периода. Тогда величина переплаты П и полная величина выплат В за всё время выплаты кредита даются формулами

В условиях нашей задачи получаем: откуда для n = 19 находим r = 3.

Доказательство формул (для получения полного балла его нужно приводить на экзамене) немедленно следует из вышеприведённого решения задачи путём замены 19 месяцев на n месяцев и использовании формулы суммы n первых членов арифметической прогрессии.

Источник: http://ege.sdamgia.ru/test?pid=510103

Взяли кредит на 19 месяцев

Задание 17. 15-го января планируется взять кредит в банке на некоторый срок (целое число месяцев). Условия его возврата таковы:

— 1-го числа каждого месяца долг возрастает на 1 % по сравнению с концом предыдущего месяца;

— со 2-го по 14-е число каждого месяца необходимо выплатить часть долга;

— 15-го числа каждого месяца долг должен быть на одну и ту же сумму меньше долга на 15-е число предыдущего месяца.

На сколько месяцев планируется взять кредит, если известно, что общая сумма выплат после полного погашения кредита на 20 % больше суммы, взятой в кредит? (Считайте, что округления при вычислении платежей не производятся.)

Пусть сумма кредита равна S, а кредит планируется взять на n месяцев. По условию, долг перед банком по состоянию на 15-е число должен уменьшаться до нуля равномерно:

Первого числа каждого месяца долг возрастает на 1%, значит, последовательность размеров долга на 1-е число каждого месяца такова:

Следовательно, выплаты должны быть следующими:

Всего следует выплатить

Общая сумма выплат на 20 % больше суммы, взятой в кредит, поэтому

Источник: http://self-edu.ru/ege2020_36.php?id=1_17

Задание №19 из реального ЕГЭ по математике от 4 июня 2015

В новом формате ЕГЭ по математике задание значится как «Задание №17»

Разбор задания №19 одного из вариантов

15‐го января планируется взять кредит в банке на 14 месяцев. Условия его возврата таковы:
‐ 1‐го числа каждого месяца долг возрастает на % по сравнению с концом предыдущего месяца;
‐ со 2‐го по 14‐е число каждого месяца необходимо выплатить часть долга;
‐ 15‐ го числа каждого месяца долг должен быть на одну и ту же сумму меньше долга на 15 число предыдущего месяца.
Известно, что общая сумма выплат после полного погашения кредита на 15% больше суммы, взятой в кредит. Найдите .

Пусть в кредит взято рублей.

1-го числа следующего месяца (февраль) долг составит

Со 2-го по 14-е число должна быть произведена выплата в размере

после чего сумма долга составит

(При такой схеме долг на одну и ту же сумму меньше долга на 15 число предыдущего месяца).

1-го марта долг составит

Со 2-го по 14-е число должна быть произведена выплата в размере

после чего сумма долга составит

В итоге сумма выплат составит

Перепишем полученную сумму так:

Посколько известно, что общая сумма выплат после полного погашения кредита на 15% больше суммы, взятой в кредит, то составим уравнение:

Ответ: 2.

Чтобы не потерять страничку, вы можете сохранить ее у себя:

Источник: http://egemaximum.ru/zadanie-19-iz-realnogo-ege-po-matematike-ot-4-iyunya-2015/

Профильный ЕГЭ по математике. Задание № 17. Кредиты. Схема 2: известна информация об изменении суммы долга.

Задачи ЕГЭ №17 на кредиты обычно относятся к одному из двух характерных типов, которые легко различить между собой.

1 тип. Выплаты кредита производятся равными платежами. Эта схема еще называется «аннуитет»

2 тип. Выплаты кредита подбираются так, что сумма долга уменьшается равномерно. Это так называемая «схема с дифференцированными платежами».

К первому типу относятся также задачи, в которых есть информация о платежах.

Ко второму типу — задачи, в которых есть информация об изменении суммы долга.

В этой статье — решение задач на кредиты второго типа. Схема 2: с дифференцированными платежами. В условии есть информация об изменении суммы долга.

Если в условии задачи сказано, что сумма долга уменьшается равномерно, или что 15-го числа каждого месяца сумма долга на одну и ту же величину меньше суммы долга на 15-е число предыдущего месяца, или есть информация о том, как именно уменьшается сумма долга, — это задача на кредиты второго типа.

1. 15-го января планируется взять кредит в банке на 19 месяцев. Условия его возврата таковы:

— 1-го числа каждого месяца долг возрастёт на по сравнению с концом предыдущего месяца;

— со 2-го по 14-е число каждого месяца необходимо выплатить часть долга;

— 15-го числа каждого месяца долг должен быть на одну и ту же сумму меньше долга на 15-е число предыдущего месяца. Известно, что общая сумма выплат после полного погашения кредита на больше суммы, взятой в кредит. Найдите r.

Ключевая фраза в условии: «15-го числа каждого месяца долг должен быть на одну и ту же сумму меньше долга на 15-е число предыдущего месяца». Другими словами, сумма долга уменьшается равномерно. Что это значит?

Если вначале сумма долга равна S, то через месяц (после начисления процентов и первой выплаты) она уменьшилась до .Еще через месяц будет ,затем — и так до нуля.

Нарисуем схему погашения кредита.

Первая строка в схеме — сумма долга после очередной выплаты.

Вторая строка — сумма долга после начисления процентов. Стрелками показано, как меняется сумма долга. Число платежных периодов n = 19.

Вот клиент берет в кредит сумму . После начисления процентов сумма долга увеличилась в раз и стала равна . После первой выплаты сумма долга уменьшилась на и стала равной . Банк снова начисляет проценты, и теперь сумма долга равна . Таким образом, первая выплата

Сумма всех выплат:

Мы сгруппировали слагаемые и вынесли общие множители за скобку. Видим, что и в первой, и во второй скобке — суммы арифметической прогрессии, у которой и

В первой скобке — сумма 19 слагаемых, во второй сумма 18 слагаемых.

По формуле сумма арифметической прогрессии,

Получим, что общая сумма выплат , где — величина переплаты. Эта величина показывает, на сколько общая сумма выплат больше суммы, взятой в кредит.

Здесь — количество платежных периодов.

Обратите внимание. Общая сумма выплат:

, где — величина переплаты,

В следующих задачах мы будем (если это возможно) применять удобную формулу для переплаты без вывода. Однако на экзамене вам надо будет ее вывести. Иначе решение могут не засчитать.

Читайте так же:  Человек умер кто должен платить кредит

2. 15-го января планируется взять кредит в банке на некоторое количество месяцев. Условия его возврата таковы:

— 1-го числа каждого месяца долг возрастает на по сравнению с концом предыдущего месяца;

— со 2-го по 14-е число каждого месяца необходимо выплатить часть долга;

— 15-го числа каждого месяца долг должен быть на одну и ту же сумму меньше долга на 15-е число предыдущего месяца.

На сколько месяцев можно взять кредит, если известно, что общая сумма выплат после полного погашения кредита на больше суммы, взятой в кредит.

По формуле для переплаты при выплате суммы кредита дифференцированными платежами имеем:

где — искомое число месяцев, а — величина платежной ставки в процентах. По условию, переплата равна , тогда:

3. 15-го января был выдан полугодовой кредит на развитие бизнеса. В таблице представлен график его погашения.

Дата 15,01 15,02 15,03 15,04 15,05 15,06 15,07
Долг (в процентах от кредита) 100% 90% 80% 70% 60% 50% 0%

В конце каждого месяца, начиная с января, текущий долг увеличивался на , а выплаты по погашению кредита происходили в первой половине каждого месяца, начиная с февраля. На сколько процентов общая сумма выплат при таких условиях больше суммы самого кредита?

В этой задаче (как и в большинстве задач ЕГЭ) мы не сможем применить формулу для величины переплаты. Ведь погашение кредита происходит неравномерно. Первые 5 месяцев долг ежемесячно уменьшается на своей величины, а в последний месяц сразу до нуля.

Запишем, чему равна каждая выплата, и найдем сумму всех выплат.

Общая сумма выплат

— переплаты, — общая сумма выплат, — сумма кредита.

4. В июле 2016 года планируется взять кредит в размере 6,6 млн. руб. Условия возврата таковы:

— каждый январь долг возрастает на по сравнению с концом предыдущего года.

— с февраля по июнь необходимо выплатить часть долга.

— в июле 2017, 2018 и 2019 годов долг остается равным 6,6 млн. руб.

— суммы выплат 2020 и 2021 годов равны.

Найдите r, если в 2021 году долг будет выплачен полностью и общие выплаты составят 12,6 млн. рублей.

— ежегодные выплаты 2020 и 2021 годов.

В 2018 году появились, пожалуй, самая сложная задачи ЕГЭ такого типа. Вот большая статья о том, что же все-таки было на ЕГЭ-2018:

Подведем итоги. Соберем всё, что узнали о решении задач на кредиты по второй схеме (с дифференцированными платежами) в небольшую таблицу:

Равномерное уменьшение суммы долга (схема с дифференцированными платежами). Применяется также, когда известно, как уменьшается сумма долга.
Пусть – сумма кредита, – количество платежных периодов,
– процент по кредиту, начисляемый банком. Коэффициент показывает, во сколько раз увеличивается сумма долга после начисления процентов.
Схема погашения кредита для платежных периодов.

– число платежных периодов.

Сумма всех выплат:

Применяем формулу суммы арифметической прогрессии. Общая сумма выплат:

Звоните нам: 8 (800) 775-06-82 (бесплатный звонок по России) +7 (495) 984-09-27 (бесплатный звонок по Москве)

Или нажмите на кнопку «Узнать больше», чтобы заполнить контактную форму. Мы обязательно Вам перезвоним.

Обучающее видео
БЕСПЛАТНО

Техническая поддержка:
[email protected] (круглосуточно)

Закажите звонок и получите скидку -50% на первый месяц занятий!

Для нормального функционирования и Вашего удобства, сайт использует файлы cookies. Это совершенно обычная практика.Продолжая использовать портал, Вы соглашаетесь с нашей Политикой конфиденциальности.

Все поля обязательны для заполнения

Премиум

Вся часть 2 на ЕГЭ по математике, от задачи 13 до задачи 19. То, о чем не рассказывают даже ваши репетиторы. Все приемы решения задач части 2. Оформление задач на экзамене. Десятки реальных задач ЕГЭ, от простых до самых сложных.

Видеокурс «Премиум» состоит из 7 курсов для освоения части 2 ЕГЭ по математике (задачи 13-19). Длительность каждого курса — от 3,5 до 4,5 часов.

  1. Уравнения (задача 13)
  2. Стереометрия (задача 14)
  3. Неравенства (задача 15)
  4. Геометрия (задача 16)
  5. Финансовая математика (задача 17)
  6. Параметры (задача 18)
  7. Нестандартная задача на числа и их свойства (задача 19).
Видео (кликните для воспроизведения).

Здесь то, чего нет в учебниках. Чего вам не расскажут в школе. Приемы, методы и секреты решения задач части 2.

Каждая тема разобрана с нуля. Десятки специально подобранных задач, каждая из которых помогает понять «подводные камни» и хитрости решения. Автор видеокурса Премиум — репетитор-профессионал Анна Малкова.

Получи пятерку

Видеокурс «Получи пятерку» включает все темы, необходимые для успешной сдачи ЕГЭ по математике на 60-65 баллов. Полностью все задачи 1-13 Профильного ЕГЭ по математике. Подходит также для сдачи Базового ЕГЭ по математике. Если вы хотите сдать ЕГЭ на 90-100 баллов, вам надо решать часть 1 за 30 минут и без ошибок!

Курс подготовки к ЕГЭ для 10-11 класса, а также для преподавателей. Все необходимое, чтобы решить часть 1 ЕГЭ по математике (первые 12 задач) и задачу 13 (тригонометрия). А это более 70 баллов на ЕГЭ, и без них не обойтись ни стобалльнику, ни гуманитарию.

Вся необходимая теория. Быстрые способы решения, ловушки и секреты ЕГЭ. Разобраны все актуальные задания части 1 из Банка заданий ФИПИ. Курс полностью соответствует требованиям ЕГЭ-2018.

Курс содержит 5 больших тем, по 2,5 часа каждая. Каждая тема дается с нуля, просто и понятно.

Сотни заданий ЕГЭ. Текстовые задачи и теория вероятностей. Простые и легко запоминаемые алгоритмы решения задач. Геометрия. Теория, справочный материал, разбор всех типов заданий ЕГЭ. Стереометрия. Хитрые приемы решения, полезные шпаргалки, развитие пространственного воображения. Тригонометрия с нуля — до задачи 13. Понимание вместо зубрежки. Наглядное объяснение сложных понятий. Алгебра. Корни, степени и логарифмы, функция и производная. База для решения сложных задач 2 части ЕГЭ.

Сразу после оплаты вы получите ссылки на скачивание видеокурсов и уникальные ключи к ним.

Задачи комплекта «Математические тренинги — 2019» непростые. В каждой – интересные хитрости, «подводные камни», полезные секреты.

Варианты составлены так, чтобы охватить все возможные сложные задачи, как первой, так и второй части ЕГЭ по математике.

Как пользоваться?

  1. Не надо сразу просматривать задачи (и решения) всех вариантов. Такое читерство вам только помешает. Берите по одному! Задачи решайте по однойи старайтесь довести до ответа.
  2. Если почти ничего не получилось – начинать надо не с решения вариантов, а с изучения математики. Вам помогут книга для подготовки к ЕГЭи Годовой Онлайн-курс.
  3. Если вы правильно решили из первого варианта Маттренингов 5-7 задач – значит, знаний не хватает. Смотри пункт 1: Книгаи Годовой Онлайн-курс!
  4. Обязательно разберите правильные решения. Посмотрите видеоразбор – в нем тоже много полезного.
  5. Можно решать самостоятельно или вместе с друзьями. Или всем классом. А потом смотреть видеоразбор варианта.

Стоимость комплекта «Математические тренинги – 2019» — всего 1100 рублей. За 5 вариантов с решениями и видеоразбором каждого.

Это пробная версия онлайн курса по профильной математике.

Вы получите доступ к 3 темам, которые помогут понять принцип обучения, работу платформы и оценить ведущую курса Анну Малкову.

— 3 темы курса (из 50).
— Текстовый учебник с видеопримерами.
— Мастер-класс Анны Малковой.
— Тренажер для отработки задач.

Регистрируйтесь, это бесплатно!

Нажимая на кнопку, вы даете согласие на обработку своих персональных данных

Источник: http://ege-study.ru/zadacha-17-profilnogo-ege-po-matematike-kredity-sxema-2-izvestna-informaciya-ob-izmenenii-summy-dolga/

Взяли кредит на 19 месяцев

Задание 17. 15 января планируется взять кредит в банке на 19 месяцев. Условия его возврата таковы:

Читайте так же:  Изменение срока сокращения работника

— 1-го числа каждого месяца долг возрастает на r % по сравнению с концом предыдущего месяца;

— со 2-го по 14-е число каждого месяца необходимо выплатить часть долга;

— 15-го числа каждого месяца долг должен быть на одну и ту же сумму меньше долга на 15-е число предыдущего месяца.

Известно, что общая сумма выплат после полного погашения кредита на 30% больше суммы, взятой в кредит. Найдите r.

Обозначим через сумму кредита, взятого в банке на 19 месяцев. Каждый месяц долг возрастает на %, следовательно, долг на второй месяц составит

После увеличения долга, следует выплата в размере рублей. Получаем размер долга на конец второго месяца:

и после упрощения получаем выражение

В следующий месяц сумма долга будет равна

с размером выплаты в

после чего сумма долга составит

Таким образом, сумма выплат через 19 месяцев составит

По условию задачи сумма выплат на 30% больше суммы взятой в кредит, т.е. составляет , то есть получаем равенство

Источник: http://self-edu.ru/ege2016_36.php?id=1_17

Подготовка к ЕГЭ по математике: примеры решения экономических задач

15 января планируется взять кредит в банке на 16 месяцев. Условия возврата таковы:

  • 1-го числа каждого месяца долг возрастает на 2% по сравнению с концом предыдущего месяца;
  • со 2-го по 14-е число каждого месяца необходимо выплатить часть долга;
  • 15-го числа каждого месяца долг должен быть на одну и ту же сумму меньше долга на 15-е число предыдущего месяца.

Какую сумму следует взять в кредит, чтобы общая сумма выплат после полного погашения равнялась 2,34 млн рублей?

Дано:

2,34 млн рублей — общая сумма выплат

Найти:

Решение:

По условиям задачи, общая сумма выплат после полного погашения кредита равна 2,34 млн рублей.

Подставим в полученное выражение известное значение t.

S (17 • 1,02 — 15) = 4,68

S = 2 (млн рублей)

Ответ: 2 млн рублей

Задача 2

15-го января планируется взять кредит в банке на сумму 2,4 млн рублей на 24 месяца. Условия возврата таковы:

  • 1-го числа каждого месяца долг возрастает на 3% по сравнению с концом предыдущего месяца;
  • со 2-го по 14-е число каждого месяца необходимо выплатить часть долга;
  • 15-го числа каждого месяца долг должен быть на одну и ту же величину меньше долга на 15-е число предыдущего месяца.

Какую сумму нужно выплатить банку в первые 12 месяцев?

Дано:

S = 2,4 млн рублей

Найти:

Общую сумму выплат за первые 12 месяцев.

Решение:

Найдем общую сумму выплат за первые 12 месяцев.

Подставим в полученное выражение значения известных переменных.

Ответ: 1,866 млн рублей

Задача 3

15-го декабря планируется взять кредит в банке на 21 месяц. Условия возврата таковы:

  • 1-го числа каждого месяца долг возрастает на 3% по сравнению с концом предыдущего месяца;
  • со 2-го по 14-е число каждого месяца необходимо выплатить часть долга;
  • 15-го числа каждого месяца с 1-го по 20-й долг должен быть на 30 тысяч рублей меньше долга на 15-е число предыдущего месяца;
  • к 15-му числу 21-го месяца кредит должен быть полностью погашен.

Какую сумму планируется взять в кредит, если общая сумма выплат после полного его погашения составит 1604 тысяч рублей?

Дано:

S тыс. рублей: кредит

Общая сумма выплат равна 1604 тыс. руб.

Найти:

Решение:

2) t(S — 1 • 30) — (S — 2 • 30)

3) t(S — 2 • 30) — (S — 3 • 30)

4) t(S — 3 • 30) — (S — 4 • 30)

19) t(S — 18 • 30) — (S — 19 • 30)

20) t(S — 19 • 30) — (S — 20 • 30)

21) t(S — 20 • 30) — 0

По условию задачи известно, что общая сумма выплат равна 1604 тыс. рублей.

1) (St + St — 570t) • 10 — (2S — 630) • 10 + St — 600t = 20St — 5700t — 20S +6300 + St — 600t = 21St — 20S + 6300 — 5700t = 21 • 1,03S — 20S + 6300 — 5700 • 1,03 = 21,63S — 20S +6300 — 6489 = 1,63S — 189

2) Выплаты составили 1604 тыс. рублей:

1,63S — 189 = 1604

S = 1100 тыс. рублей

Ответ: 1100 тыс. рублей.

Задача 4

15-го декабря планируется взять кредит в банке на 1200 тысяч рублей на (n + 1) месяц. Условия возврата таковы:

  • 1-го числа каждого месяца долг возрастает на r % по сравнению с концом предыдущего месяца;
  • cо 2-го по 14-е число каждого месяца необходимо выплатить часть долга;
  • 15-го числа каждого месяца с 1-го по n-й долг должен быть на 80 тысяч рублей меньше долга на 15-е число предыдущего месяца;
  • 15-го числа n-го месяца долг составит 400 тысяч рублей;
  • к 15-му числу (n+1)-го месяца кредит должен быть полностью погашен.

Найдите r, если известно, что общая сумма выплат после полного погашения кредита составит 1288 тысяч рублей.

Дано:

S = 1200 тыс. рублей (кредит)

n + 1 месяц — срок кредитования

С 1-го по n-ный месяц долг уменьшается на 80 тыс. рублей.

15-го числа n-го месяца долг составит 400 тыс. рублей.

Общая сумма выплат составляет 1288 тыс. рублей (после полного погашения кредита).

Источник: http://rosuchebnik.ru/material/podgotovka-k-ege-podgotovka-k-resheniyu-ekonomicheskih-zadach/

Кто нибудь дайте подробно обоснованное решение, с построением математической модели.
15 января планируется взять кредит в банке на 19 месяцев. Условия его возврата таковы:

— 1-го числа каждого месяца долг возрастает на r % по сравнению с концом предыдущего месяца;

— со 2-го по 14-е число каждого месяца необходимо выплатить часть долга;

— 15-го числа каждого месяца долг должен быть на одну и ту же сумму меньше долга на 15-е число предыдущего месяца.

Известно, что общая сумма выплат после полного погашения кредита на 30% больше суммы, взятой в кредит. Найдите r.

  • Попроси больше объяснений
  • Следить
  • Отметить нарушение

NFORCER 04.06.2016

Что ты хочешь узнать?

Ответ

Пусть долг составлял С рублей, х = (100 + r) / 100. Так как каждый месяц долг уменьшается на одинаковое количество рублей, каждый месяц он уменьшается на С / 24. Тогда на 15 число первого месяца долг составляет С рублей, второго месяца — (С — С / 24) = 23/24С, третьего 22/24С и т.д.
Чтобы долг на 15 число второго месяца стал 23/24С нужно заплатить
Сх — 23/24С, где на долг первого месяца начислили проценты
Когда на втором месяце нужно будет платить, долг станет 23/24Сх, его нужно уменьшить до 22/24С, то есть заплатить 23/24Сх — 22/24С. Аналогично в другие месяцы
То есть выплаты за кажды месяц составляют
1)Сх — 23/24С
2)23/24Сх — 22/24С
3)22/24Сх — 21/24С
.
24)Сх/24

Сложив все, получим
Сх + 23/24Сх + 22/24Сх + . + Сх/24 — (23/24С + 22/24С + . + С/24) =
= Сх/24(24 + 23 + 22 + . + 1) — С/24(23 + 22 + 21 + . + 1) =
= Сх/24 * (24 * 25 / 2) — С/24 * (23 * 24 / 2) =
=С/2 * (25х — 23) = 1,3С
25х — 23 = 2,6
х = 25,6 / 25 = 1,024
r = 2,4
Ответ: 2,4%

Источник: http://znanija.com/task/19058844

Экономическая задача на ЕГЭ 1 июня → №17 профильного ЕГЭ

а) Долг на 1-е число месяца без учета процентной ставки:
1. S.
2. S-50.
3. S-100.
.
20. S-19⋅50.
21. S-20⋅50.

б) Выплачено до 15-го числа месяца:
1. (50 + S cdot frac>).
2. (50 + left( right) cdot frac>).
3. (50 + left( right) cdot frac>).
.
20. (50 + left( right) cdot frac>).
21. (left( right) + left( right) cdot frac>).

Читайте так же:  Военная ипотека накопления на счету

в) Долг после 14-го числа месяца:
1. (S — 50).
2. (S — 100).
3. (S — 150).
.
20. (S — 20 cdot 50).
21. (0).

г) Складывая выплаты, получим:
(1000 + S — 1000 + frac>> — frac right)>>> = 2073.)
(121S = 207300 + 50 cdot frac> cdot 20 = 217800,;;S = 1800.)

Источник: http://4ege.ru/zadacha/56677-zadacha-17-profilnogo-ege-2018.html

Рубрика: Задание 17 (экономическая задача)

Решение задания 17, вариант 7, Ященко 36 вариантов, ЕГЭ-2019 (видео)

15-го марта планируется взять кредит в банке на 26 месяцев. Условия его возврата таковы: — 1-го числа каждого месяца долг возрастает на 3% по сравнению с концом предыдущего месяца; — со 2-го по 14-е число каждого месяца необходимо выплатить часть Читать далее …

Реальный ЕГЭ 2го июня 2017, задание 17

В 2020 году планируется взять кредит на некоторую сумму В июле 2020 года планируется взять кредит на некоторую сумму. Условия возврата таковы: — в январе каждого года долг увеличивается на 25% по сравнению с предыдущим годом; — с февраля по Читать далее …

Реальный ЕГЭ 29 мая 2019, задание 17

15-го января планируется взять кредит в банке на 39 месяцев. Условия его возврата таковы: — 1-го числа каждого месяца долг возрастёт на r% по сравнению с концом предыдущего месяца; — со 2-го по 14-е число каждого месяца необходимо выплатить часть Читать далее …

Решение задания 17, вариант 3, Ященко 36 вариантов, ЕГЭ-2019

15-го июня планируется взять кредит в банке на сумму 1300 тысяч рублей на 16 месяцев. Условия его возврата таковы: — 1-го числа каждого месяца долг возрастает на r % по сравнению с концом предыдущего месяца; — со 2-го по 14-е Читать далее …

Решение задания 17, вариант 36, Ященко 36 вариантов, ЕГЭ-2018

Олег хочет взять в кредит 1,2 млн рублей. Погашение кредита происходит раз в год равными суммами (кроме, может быть, последней) после начисления процентов. Ставка процента 10% годовых. На какое минимальное количество лет может Олег взять кредит, чтобы ежегодные выплаты были Читать далее …

Решение задания 17, вариант 35, Ященко 36 вариантов, ЕГЭ-2018

В двух областях есть по 160 рабочих, каждый из которых готов трудиться по 5 часов в сутки на добыче алюминия или никеля. В первой области один рабочий за час добывает 0,1 кг алюминия или 0,3 кг никеля. Во второй области Читать далее …

Решение задания 17, вариант 34, Ященко 36 вариантов, ЕГЭ-2018

У фермера есть два поля, каждое площадью 10 гектаров. На каждом поле можно выращивать картофель и свёклу, поля можно делить между этими культурами в любой пропорции. Урожайность картофеля на первом поле составляет 400 ц/га, а на втором — 300 ц/га. Читать далее …

Решение задания 17, вариант 33, Ященко 36 вариантов, ЕГЭ-2018

15 января планируется взять кредит в банке на 24 месяца. Условия его возврата таковы: — 1-го числа каждого месяца долг возрастает на 2% по сравнению с концом предыдущего месяца; — со 2-го по 14-е число каждого месяца необходимо выплатить часть Читать далее …

Решение задания 17, вариант 32, Ященко 36 вариантов, ЕГЭ-2018

Матвей хочет взять в кредит 1,4 млн рублей. Погашение кредита происходит раз в год равными суммами (кроме, может быть, последней) после начисления процентов. Ставка процента 10% годовых. На какое минимальное количество лет может Матвей взять кредит, чтобы ежегодные выплаты были Читать далее …

Решение задания 17, вариант 31, Ященко 36 вариантов, ЕГЭ-2018

В двух областях есть по 100 рабочих, каждый из которых готов трудиться по 10 часов в сутки на добыче алюминия или никеля. В первой области один рабочий за час добывает 0,3 кг алюминия или 0,1 кг никеля. Во второй области Читать далее …

Решение задания 17, вариант 30, Ященко 36 вариантов, ЕГЭ-2018

Предприниматель купил здание и собирается открыть в нем отель. В отеле могут быть стандартные номера площадью 30 квадратных метров и номера «люкс» площадью 40 квадратных метров. Общая площадь, которую можно отвести под номера, составляет 940 квадратных метров. Предприниматель может определить Читать далее …

Решение задания 17, вариант 29, Ященко 36 вариантов, ЕГЭ-2018

В двух шахтах добывают алюминий и никель. В первой шахте имеется 60 рабочих, каждый из которых готов трудиться 5 часов в день. При этом один рабочий за час добывает 2 кг алюминия или 1 кг никеля. Во второй шахте имеется Читать далее …

Решение задания 17, вариант 28, Ященко 36 вариантов, ЕГЭ-2018

15 января планируется взять кредит в банке на 11 месяцев. Условия его возврата таковы: — 1-го числа каждого месяца долг возрастает на 3% по сравнению с концом предыдущего месяца; — со 2-го по 14-е число каждого месяца необходимо выплатить часть Читать далее …

Решение задания 17, вариант 27, Ященко 36 вариантов, ЕГЭ-2018

31 декабря 2014 года Антон взял в банке 1 млн рублей в кредит. Схема выплаты кредита следующая: 31 декабря каждого следующего года банк начисляет проценты на оставшуюся сумму долга (то есть увеличивает долг на определенное количество процентов), затем Антон переводит Читать далее …

Решение задания 17, вариант 26, Ященко 36 вариантов, ЕГЭ-2018

1 января 2015 года Иван Сергеевич взял в банке 1 млн рублей в кредит. Схема выплаты кредита следующая: 1-го числа каждого следующего месяца банк начисляет 2% на оставшуюся сумму долга (то есть увеличивает долг на 2%), затем Иван Сергеевич переводит Читать далее …

Решение задания 17, вариант 25, Ященко 36 вариантов, ЕГЭ-2018

15 января планируется взять кредит в банке на сумму 0,3 млн рублей на 24 месяца. Условия его возврата таковы: — 1-го числа каждого месяца долг возрастает на 3% по сравнению с концом предыдущего месяца; — со 2-го по 14-е число Читать далее …

Решение задания 17, вариант 24, Ященко 36 вариантов, ЕГЭ-2018

В двух областях есть по 20 рабочих, каждый из которых готов трудиться по 10 часов в сутки на добыче алюминия или никеля. В первой области один рабочий за час добывает 0,1 кг алюминия или 0,1 кг никеля. Во второй области Читать далее …

Решение задания 17, вариант 23, Ященко 36 вариантов, ЕГЭ-2018

31 декабря 2014 года Михаил взял в банке некоторую сумму в кредит под 10% годовых. Схема выплаты кредита следующая: 31 декабря каждого следующего года банк начисляет проценты на оставшуюся сумму долга (то есть увеличивает долг на 10%), затем Михаил переводит Читать далее …

Решение задания 17, вариант 22, Ященко 36 вариантов, ЕГЭ-2018

31 декабря 2014 года Сергей взял в банке 8 420 000 рублей в кредит под 10,5% годовых. Схема выплат кредита следующая – 31 декабря каждого следующего года банк начисляет проценты на оставшуюся сумму долга (то есть увеличивает долг на 10,5%), Читать далее …

Решение задания 17, вариант 21, Ященко 36 вариантов, ЕГЭ-2018

15 января планируется взять кредит в банке на 9 месяцев. Условия его возврата таковы: — 1-го числа каждого месяца долг возрастает на 3% по сравнению с концом предыдущего месяца; — со 2-го по 14-е число каждого месяца необходимо выплатить часть Читать далее …

Читайте так же:  Как узнать накопительную часть военной ипотеки

Решение задания 17, вариант 20, Ященко 36 вариантов, ЕГЭ-2018

15 января планируется взять кредит в банке на 24 месяца. Условия его возврата таковы: — 1-го числа каждого месяца долг возрастает на 2% по сравнению с концом предыдущего месяца; — со 2-го по 14-е число каждого месяца необходимо выплатить часть Читать далее …

Решение задания 17, вариант 19, Ященко 36 вариантов, ЕГЭ-2018

В двух областях есть по 160 рабочих, каждый из которых готов трудиться по 5 часов в сутки на добыче алюминия или никеля. В первой области один рабочий за час добывает 0,1 кг алюминия или 0,1 кг никеля. Во второй области Читать далее …

Решение задания 17, вариант 18, Ященко 36 вариантов, ЕГЭ-2018

15 января планируется взять кредит в банке на 25 месяцев. Условия его возврата таковы: — 1-го числа каждого месяца долг возрастает на r % по сравнению с концом предыдущего месяца; — со 2-го по 14-е число каждого месяца необходимо выплатить Читать далее …

Решение задания 17, вариант 17, Ященко 36 вариантов, ЕГЭ-2018

31 декабря 2014 года Арсений взял в банке 1 млн рублей в кредит. Схема выплаты кредита следующая: 31 декабря каждого следующего года банк начисляет проценты на оставшуюся сумму долга (то есть увеличивает долг на определённое количество процентов), затем Арсений переводит Читать далее …

Решение задания 17, вариант 16, Ященко 36 вариантов, ЕГЭ-2018

У фермера есть два поля, каждое площадью 10 гектаров. На каждом поле можно выращивать картофель и свёклу, поля можно делить между этими культурами в любой пропорции. Урожайность картофеля на первом поле составляет 500 ц/га, а на втором – 300 ц/га. Читать далее …

Решение задания 17, вариант 15, Ященко 36 вариантов, ЕГЭ-2018

В двух областях есть по 20 рабочих, каждый из которых готов трудиться по 10 часов в сутки на добыче алюминия или никеля. В первой области один рабочий за час добывает 0,2 кг алюминия или 0,2 кг никеля. Во второй области Читать далее …

Решение задания 17, вариант 14, Ященко 36 вариантов, ЕГЭ-2018

15 января планируется взять кредит в банке на 24 месяца. Условия его возврата таковы: — 1-го числа каждого месяца долг возрастает на 3% по сравнению с концом предыдущего месяца; — со 2-го по 14-е число каждого месяца необходимо выплатить часть Читать далее …

Решение задания 17, вариант 13, Ященко 36 вариантов, ЕГЭ-2018

15 января планируется взять кредит в банке на 21 месяц. Условия его возврата таковы: — 1-го числа каждого месяца долг возрастает на 1 % по сравнению с концом предыдущего месяца; — со 2-го по 14-е число каждого месяца необходимо выплатить Читать далее …

Решение задания 17, вариант 12, Ященко 36 вариантов, ЕГЭ-2018

31 декабря 2014 года Алексей взял в банке 9 282 000 рублей в кредит под 10% годовых. Схема выплат кредита следующая: 31 декабря каждого следующего года банк начисляет проценты на оставшуюся сумму долга (то есть увеличивает долг на 10%), затем Читать далее …

Решение задания 17, вариант 11, Ященко 36 вариантов, ЕГЭ-2018

В июле планируется взять кредит в банке на сумму 4,5 млн рублей на срок 9 лет. Условия его возврата таковы: — каждый январь долг возрастает на r% по сравнению с концом предыдущего года; — с февраля по июнь каждого года Читать далее …

Решение задания 17, вариант 10, Ященко 36 вариантов, ЕГЭ-2018

В июле планируется взять кредит в банке на сумму 16 млн рублей на некоторый срок (целое число лет). Условия его возврата таковы: — каждый январь долг возрастает на 25% по сравнению с концом предыдущего года; — с февраля по июнь Читать далее …

Решение задания 17, вариант 9, Ященко 36 вариантов, ЕГЭ-2018

В начале 2001 года Алексей приобрёл ценную бумагу за 11 000 рублей. В конце каждого года цена бумаги возрастает на 4000 рублей. В начале любого года Алексей может продать бумагу и положить вырученные деньги на банковский счёт. Каждый год сумма Читать далее …

Решение задания 17, вариант 8, Ященко 36 вариантов, ЕГЭ-2018

15 января планируется взять кредит в банке на сумму 1,8 млн рублей на 24 месяца. Условия его возврата таковы: — 1-го числа каждого месяца долг возрастает на 2% по сравнению с концом предыдущего месяца; — со 2-го по 14-е число Читать далее …

Решение задания 17, вариант 7, Ященко 36 вариантов, ЕГЭ-2018

15 января планируется взять кредит в банке на 19 месяцев. Условия его возврата таковы: — 1-го числа каждого месяца долг возрастает на r % по сравнению с концом предыдущего месяца; — со 2-го по 14-е число каждого месяца необходимо выплатить Читать далее …

Решение задания 17, вариант 6, Ященко 36 вариантов, ЕГЭ-2018

В июле 2020 года планируется взять кредит в банке на сумму 427 000 рублей. Условия его возврата таковы: — каждый январь долг увеличивается на 25 % по сравнению с концом предыдущего года; — с февраля по июнь каждого года необходимо Читать далее …

Решение задания 17, вариант 5, Ященко 36 вариантов, ЕГЭ-2018

В июле 2020 года планируется взять кредит в банке на сумму 928 200 рублей. Условия его возврата таковы: — каждый январь долг увеличивается на 10 % по сравнению с концом предыдущего года; — с февраля по июнь каждого года необходимо Читать далее …

Решение задания 17, вариант 4, Ященко 36 вариантов, ЕГЭ-2018

В июле 2020 года планируется взять кредит в банке на сумму 545 000 рублей. Условия его возврата таковы: — каждый январь долг увеличивается на 40 % по сравнению с концом предыдущего года; — с февраля по июнь каждого года необходимо Читать далее …

Решение задания 17, вариант 3, Ященко 36 вариантов, ЕГЭ-2018

В июле 2020 года планируется взять кредит в банке на сумму 640 000 рублей. Условия его возврата таковы: — каждый январь долг увеличивается на r % по сравнению с концом предыдущего года; — с февраля по июнь каждого года необходимо Читать далее …

Решение задания 17, вариант 2, Ященко 36 вариантов, ЕГЭ-2018

В июле 2020 года планируется взять кредит в банке на сумму 600 000 рублей. Условия его возврата таковы: — каждый январь долг увеличивается на r % по сравнению с концом предыдущего года; — с февраля по июнь каждого года необходимо Читать далее …

Решение задания 17, вариант 1, Ященко 36 вариантов, ЕГЭ-2018

В июле 2020 года планируется взять кредит в банке на сумму 300 000 рублей. Условия его возврата таковы: — каждый январь долг увеличивается на r % по сравнению с концом предыдущего года; — с февраля по июнь каждого года необходимо Читать далее …

Решения заданий по темам:

Контакты:

Whatsapp:
+7(985)170-86-00

Видео (кликните для воспроизведения).

Источник: http://ege-resheniya.ru/category/zadanie-17-ekonomika

Взяли кредит на 19 месяцев
Оценка 5 проголосовавших: 1

ОСТАВЬТЕ ОТВЕТ

Please enter your comment!
Please enter your name here